Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(12): 6289-6301, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38502021

RESUMO

The indiscriminate use of synthetic herbicides reduces its effectiveness. Bioherbicides produced with metabolites emerge as an alternative to managing weeds. We aimed to analyze the phytotoxic potential of the essential oil of Vanillosmopsis arborea (EOVA) and the α-bisabolol molecule, its main component. We evaluated the effects of EOVA and α-bisabolol at different concentrations on the germination, growth, antioxidant metabolism, and photosynthesis of different species. EOVA and α-bisabolol showed promising phytotoxic effects on the germination and initial growth of the weed Senna occidentalis, inhibiting the activity of the antioxidant enzymes and increasing lipid peroxidation. α-Bisabolol reduced the weed seedling growth by inducing oxidative stress, which suggests a greater role in postemergence. Moreover, in the weed postemergence, both EOVA and α-bisabolol caused damage in the shoots, reduced the chlorophyll content, and increased lipid peroxidation besides reducing photosynthesis in S. occidentalis. Overall, we suggest the promising action of α-bisabolol and EOVA as bioherbicides for weed control.


Assuntos
Herbicidas , Controle de Plantas Daninhas , Antioxidantes , Sesquiterpenos Monocíclicos , Herbicidas/farmacologia
2.
Funct Plant Biol ; 512024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163648

RESUMO

Environments originating from banded iron formations, such as the canga , are important reference ecosystems for the recovery of degraded areas by mining. The objective of this work was to evaluate if the relationship between morphofunctional and photosynthetic attributes of native canga species from different functional group results in distinct responses when grown in iron mining tailings substrate. The experiment was carried out with species belonging to different functional groups: a widespread semi-deciduous tree-shrub, Myrcia splendens ; an endemic deciduous shrub, Jacaranda caroba ; and a nitrogen-fixing herbaceous species, Periandra mediterranea . The species were grown in two conditions, reference soil and iron ore tailing. Despite belonging to different functional groups when grown in tailings, the morphofunctional attributes presented similar responses between species. M. splendens was the species most affected by the conditions imposed by the iron ore mining tailings, with decreased light-use efficiency and electron transport. P. mediterranea had satisfactory growth and maintenance of photosynthetic attributes. J. caroba growing in the tailings increased the effective quantum yield of PSII. The photochemical and growth assessments were able to better explain the adaptive strategies developed by the species, guaranteeing a greater chance of success during the rehabilitation of mining substrates.


Assuntos
Ecossistema , Ferro , Plantas/metabolismo , Árvores/metabolismo , Mineração
3.
Sci Rep ; 13(1): 15151, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704663

RESUMO

Caffeine and trigonelline are found in Coffea arabica, and show antioxidant roles and growth and development functions. However, there are no reports on trigonelline and caffeine in relation to coffee rooting. The aim was to evaluate the impact of application of indole-3-butyric acid (IBA) and melatonin on caffeine and trigonelline at different stages of adventitious rooting in cuttings. In addition, to study the correlation between these metabolites and H2O2, phenols, and antioxidant enzymes. Four treatments (Control, melatonin 21 µM (M21), melatonin 43 µM (M43), and IBA 7380 µM (IBA)) were used, with four replications. The growth and biochemical parameters of the antioxidant system were performed in induction, initiation, and extension rooting stages. Higher concentrations of trigonelline and caffeine quantified in the induction and initiation stages were positively correlated with higher percentage of rooted cuttings. Trigonelline and caffeine were positively correlated with H2O2 in all stages of development of adventitious roots. The correlations of trigoneline and caffeine with phenols and antioxidant enzymes reveal different profiles, depending on the phases. The results indicate that IBA and melatonin increase trigonelline and caffeine during the induction and initiation of adventitious roots in Coffea arabica cuttings, which is correlated with a higher percentage of rooted cuttings.


Assuntos
Coffea , Melatonina , Cafeína , Antioxidantes , Peróxido de Hidrogênio , Fenóis
4.
Environ Sci Pollut Res Int ; 29(12): 18047-18062, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34686954

RESUMO

The rupture of Fundão dam was the biggest environmental disaster of the worlds' mining industry, dumping tons of iron ore tailings into the environment. Studies have shown that the Fundão dam's tailings are poor in nutrients and have high Fe and Mn concentration. In this context, our objective was to evaluate the growth performance of two native tree species (Bowdichia virgilioides and Dictyoloma vandellianum) in two treatments: fertilized soil and fertilized tailings. We hypothesize that the high concentrations of iron and manganese in the tailings can impair the growth performance of plants by interfering with the absorption of nutrients made available through fertilization. Soil and tailings samples were collected in the municipality of Barra Longa (MG, Brazil), and then fertilized with mixed mineral fertilizer ("Osmocote Plus 15-9-12" at 7.5 g L-1). The experiment was conducted for 75 days in a greenhouse using 180 cm3 tubes. We evaluate chlorophyll content, maximal PSII quantum yield, root length, shoot length, root:shoot ratio, leaf area, specific leaf area and leaf area ratio, dry mass, macro- and micronutrients concentration in the tissues, and metal translocation factor. Although assuring the adequate levels of the main nutrients to plant growth (N, P, K, Ca, and Mg), the fertilization did not reverse the negative effect of tailing on these species. The high concentration of Fe in the tissues associated with less biomass production, lower plant height, smaller leaf area, bigger specific leaf area, and reduced chlorophyll content indicates a probable phytotoxic effect of iron present in the tailings for D. vandellianum. Our results base further field evaluations and longer experiments, which will facilitate the understanding of the performance of tree species submitted to tailings with fertilization. So far, this study suggests that B. virgilioides are more tolerant to excess Fe from the tailings of Fundão dam than D. vandellianum.


Assuntos
Poluentes do Solo , Brasil , Fertilização , Ferro , Minerais , Solo , Poluentes do Solo/análise
5.
Physiol Plant ; 174(1): e13595, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34766358

RESUMO

Increasing global temperatures could result in decreasing crop production by decreasing seed germination in the field due to thermodormancy acquisition. Certain metals appear to modulate seed thermodormancy, although the exact mechanisms of that effect have not yet been elucidated. We report here the effects of Zn on the thermodormancy of sorghum seeds. Seeds treated with 0 or 200 mg Zn L-1 were germinated at optimal (30°C) and supra-optimal (40°C) temperatures and their germinability and oxidative stress markers were evaluated. The integrative effects of Zn, abscisic acid (ABA), gibberellin (GA), and H2 O2 on the physiology of seed thermodormancy were examined. The supra-optimal germination temperature (40°C) induced seed thermodormancy, which was, however, alleviated by treatment with 200 mg Zn L-1 . Thermodormancy acquired at supra-optimal temperatures in sorghum seeds must reflect de novo synthesis and accumulation of ABA. Although Zn treatment did not prevent ABA accumulation, it increased the activities of mitochondrial ETC enzymes and decreased the antioxidant enzymes' activity, leading to the accumulation of H2 O2 . By increasing mitochondria activity and H2 O2 production, Zn may induce GA synthesis and alleviate thermodormancy in sorghum seeds. The pretreatment of sorghum seeds with Zn may therefore improve seed germination and assure increased crop performance under normal (30°C) or rising (up to 40°C) temperatures.


Assuntos
Giberelinas , Sorghum , Ácido Abscísico/farmacologia , Germinação , Giberelinas/farmacologia , Peróxido de Hidrogênio/farmacologia , Sementes/fisiologia , Zinco/farmacologia
6.
Ecotoxicol Environ Saf ; 189: 110021, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31830604

RESUMO

The failure of the Fundão dam, the largest environmental disaster in the world's mining sector, was responsible for releasing millions of cubic meters of iron ore tailings into the environment. It affected thousands of hectares of the Atlantic Forest domain, one of the biodiversity hotspots for conservation. Considering the urgency to restore the flora of the affected area, we evaluated the effects that iron ore tailings from the Fundão reservoir have on the germination and initial growth of tree species native to the Atlantic Forest in the Rio Doce basin. We demonstrated that the tailings do not affect the seed germination, but do negatively interfere with plant growth. Lower biomass production, height, leaf area, chlorophyll concentration and photosynthesis as well as high concentration of iron was observed in plants grown in the tailings. Thus, we investigated if these deleterious effects were due to the presence of potentially toxic metals or nutritional deficiency imposed by low fertility of the tailings. We concluded that reduced growth was a result of nutritional limitations due to low nutrient availability, low organic matter content and low cation exchange capacity of the tailings. This conclusion was further supported by the application of fertilization, which reversed the deleterious effect of the waste on the growth of plants, assuring physiological levels of iron and nutrients in the shoot. Thus, this strategy should be considered for in situ recovery projects aiming to improve the performance of native plants.


Assuntos
Solo/química , Árvores/crescimento & desenvolvimento , Biomassa , Recuperação e Remediação Ambiental , Fertilização , Ferro/análise , Ferro/metabolismo , Mineração , Nutrientes/análise , Nutrientes/deficiência , Nutrientes/metabolismo , Floresta Úmida , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Árvores/classificação , Árvores/metabolismo
7.
Chemosphere ; 233: 905-912, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31340418

RESUMO

We investigated the interconnected roles of reactive oxygen species (ROS) generated upon seed exposure to glyphosate and/or gibberellic acid (GA3), and the possible interaction between the herbicide and the plant hormone during germination of sorghum seeds. GA3 decreased antioxidant enzyme activity in embryos, and the over accumulation of hydrogen peroxide (H2O2) in 1000 mM GA3-treated seeds resulted in the lowest germinability among treatments. The deleterious effects of glyphosate on germination rate, in contrast, were not related to H2O2 accumulation, but to its interference with the mitochondrial electron transport chain. However, interactions among glyphosate, GA3 and H2O2 during seed germination were observed. Similar to paclobutrazol, glyphosate appears to interfere with the de novo synthesis of gibberellin, which modulates seed germination through oxidative metabolism. Seeds experiencing increased oxidative status due to GA3 (100 mM) or H2O2 (50 mM) applications had the effects of glyphosate on germination rate reversed. Since decreased ATP synthesis is a secondary effect of glyphosate, increased H2O2 concentrations in embryos must facilitate germination by decreasing the energy required by ATP-demanding metabolism. Our results showed that glyphosate affect seed germination of sorghum, and that the herbicide interacts with oxidative and gibberellin metabolisms.


Assuntos
Germinação/efeitos dos fármacos , Giberelinas/metabolismo , Glicina/análogos & derivados , Herbicidas/farmacologia , Peróxido de Hidrogênio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Sorghum/metabolismo , Antioxidantes/metabolismo , Grão Comestível/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Glicina/farmacologia , Sementes/efeitos dos fármacos , Glifosato
8.
Sci Total Environ ; 651(Pt 2): 2671-2678, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30463122

RESUMO

Their continuous release into the environment, associated with their inherent biological activity, has motivated investigations into the detrimental effects of antibiotics and herbicides in natural and agricultural ecosystems. In this study, the interactive effects of the antibiotic ciprofloxacin (Cipro) and the herbicide Roundup on seed germination and root development were investigated. Although both compounds act as inhibitors of the mitochondrial electron transport chain in seeds, neither Cipro nor Roundup disrupted germinability of maize seeds. However, Cipro accelerated germination by promoting ROS accumulation in seeds, while the stimulatory effect of Roundup on ROS-scavenging enzymes (catalase and ascorbate peroxidase) seems to prevent ROS-signaling, delaying the germination process. Roundup reduced root elongation, possibly due to its interference with auxin production, thereby preventing cell division, while Cipro stimulated root elongation by increasing root oxidative status. Cipro and Roundup showed antagonistic effects on maize seeds and root physiology. The presence of the antibiotic is likely not to disturb plant development; however, its stimulatory effects were not sufficient to overcome the deleterious effects of Roundup. According to our results, glyphosate-based herbicides must be carefully used during maize cropping and although antibiotics such as Cipro may not negatively impact agricultural production, their accumulation by crops must be investigated since this can be a pathway of antibiotic-insertion into the food chain.


Assuntos
Antibacterianos/toxicidade , Ciprofloxacina/toxicidade , Germinação/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Testes de Toxicidade , Zea mays/efeitos dos fármacos , Catalase/metabolismo , Glicina/toxicidade , Sementes/efeitos dos fármacos , Zea mays/fisiologia , Glifosato
9.
Chemosphere ; 202: 410-419, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29579676

RESUMO

The physiological responses of the aquatic liverwort Ricciocarpus natans to ciprofloxacin (Cipro) exposure under different growth temperatures were investigated. Cipro appears to act as an inhibitor of mitochondrial Complex III by blocking the oxidation of quinol, resulting in the formation of hydrogen peroxide (H2O2). H2O2 accumulation upon Cipro exposure is responsible for decreased photosynthesis in plants. The amount of H2O2 in plants is kept under control by antioxidant enzymes, whose activities are central to the responses of plants to Cipro yet are influenced by temperature. Increased temperature favored Cipro uptake by plants as well as its deleterious effects on mitochondrial activity; however, it also favored the activity of antioxidant enzymes, thereby preventing the exacerbation of the deleterious effects of Cipro. The uptake of Cipro by plants appears to be largely a passive process, although some uptake must be driven by an energy-consuming process. Ricciocarpus natans should be considered for programs aimed at the reclamation of Cipro since this plant exhibits high Cipro-tolerance, the capacity for accumulation and increased uptake rates of the antibiotic with increasing temperatures (from 20 to 30 °C).


Assuntos
Ciprofloxacina/farmacocinética , Hepatófitas/metabolismo , Temperatura , Antibacterianos/toxicidade , Antioxidantes , Ciprofloxacina/toxicidade , Mudança Climática , Hepatófitas/enzimologia , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Fotossíntese/efeitos dos fármacos , Plantas/metabolismo
10.
J Agric Food Chem ; 65(11): 2279-2286, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28245120

RESUMO

We investigated the effects of different concentrations of glyphosate acid and one of its formulations (Roundup) on seed germination of two glyphosate-resistant (GR) and one non-GR variety of soybean. As expected, the herbicide affected the shikimate pathway in non-GR seeds but not in GR seeds. We observed that glyphosate can disturb the mitochondrial electron transport chain, leading to H2O2 accumulation in soybean seeds, which was, in turn, related to lower seed germination. In addition, GR seeds showed increased activity of antioxidant systems when compared to non-GR seeds, making them less vulnerable to oxidative stress induced by glyphosate. The differences in the responses of GR varieties to glyphosate exposure corresponded to their differences in enzymatic activity related to H2O2 scavenging and mitochondrial complex III (the proposed site of ROS induction by glyphosate). Our results showed that glyphosate ought to be used carefully as a pre-emergence herbicide in soybean field crop systems because this practice may reduce seed germination.


Assuntos
Germinação/efeitos dos fármacos , Glycine max/efeitos dos fármacos , Glicina/análogos & derivados , Resistência a Herbicidas , Herbicidas/farmacologia , Glicina/farmacologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Glifosato
11.
Environ Toxicol Chem ; 36(8): 2036-2042, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28052377

RESUMO

The integrative effects of zinc (Zn; 0 mg L-1 , 75 mg L-1 , 150 mg L-1 , and 200 mg L-1 ) and temperature (25 °C, 30 °C, and 35 °C) on seed germination of the threatened Brazilian species Dimorphandra wilsonii were evaluated. Zinc effects on seed germination were only observed at 30 °C and 35 °C. By stimulating respiration rates, rising temperatures accentuate hydrogen peroxide (H2 O2 ) formation in germinating seeds in the presence of Zn. Seed Zn tolerance was related to the activation of enzymatic antioxidants, and ascorbate peroxidase (APX) activity had a central role in H2 O2 scavenging under the highest temperatures tested. Increased APX activity allowed successful germination, whereas decreasing APX activity was accompanied by decreasing germination rates in Zn-treated seeds at 35 °C. Within a scenario of future climate change, it will be extremely important to avoid increasing Zn concentrations in natural habitats that would threaten conservation efforts directed toward this endangered plant species. Environ Toxicol Chem 2017;36:2036-2042. © 2017 SETAC.


Assuntos
Mudança Climática , Fabaceae/efeitos dos fármacos , Germinação/efeitos dos fármacos , Temperatura Alta , Poluentes do Solo/toxicidade , Zinco/toxicidade , Antioxidantes/metabolismo , Brasil , Fabaceae/crescimento & desenvolvimento , Fabaceae/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredução , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
12.
J Hazard Mater ; 328: 140-149, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28110148

RESUMO

We investigate the physiological responses and antibiotic-uptake capacity of Lemna minor exposed to ciprofloxacin. Ciprofloxacin (Cipro) induced toxic effects and hormesis in plants by significantly modifying photosynthesis and respiration pathways. A toxic effect was induced by a concentration ≥1.05mg ciprofloxacin l-1 while hormesis occurs at the lowest concentration studied (0.75mg ciprofloxacin l-1). By impairing normal electron flow in the respiratory electron transport chain, ciprofloxacin induces hydrogen peroxide (H2O2) production. The ability of plants to cope with H2O2 accumulation using antioxidant systems resulted in stimulation/deleterious effects to photosynthesis by Cipro. Cipro-induced oxidative stress was also associated with the ability of L. minor plants to uptake the antibiotic and, therefore, with plant-uptake capacity. Our results indicate that instead of being a photosystem II binding molecule, Cipro induces oxidative stress by targeting the mitochondrial ETC, which would explain the observed effects of the antibiotic on non-target eukaryotic organisms. The selection of plants species with a high capacity to tolerate oxidative stress may constitute a strategy to be used in Cipro-remediation programs.


Assuntos
Antibacterianos/toxicidade , Araceae/efeitos dos fármacos , Ciprofloxacina/toxicidade , Metabolismo Energético/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Antibacterianos/metabolismo , Araceae/metabolismo , Clorofila/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/efeitos dos fármacos
13.
Environ Pollut ; 220(Pt A): 452-459, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27726979

RESUMO

Glyphosate-formulations are widely used in the Brazilian Cerrado (neotropical savanna) with little or no control, threatening population of the endangered species Dimorphandra wilsonii. We investigated the toxicity of different concentrations (0, 5, 25 and 50 mg l-1) of glyphosate acid and one of its formulations (Roundup®) on seed germination in D. wilsonii. Glyphosate acid and Roundup drastically decreased seed germination by decreasing seed respiration rates. The activation of antioxidant enzymes, ascorbate peroxidase and catalase assure no hydrogen peroxide accumulation in exposed seeds. Glyphosate acid and the Roundup-formulation negatively affected the activities of enzymes associated with the mitochondrial electron transport chain (ETC), with Complex III as its precise target. The toxicity of Roundup-formulation was greater than that of glyphosate acid due to its greater effects on respiration. The herbicide glyphosate must impair D. wilsonii seed germination by disrupting the mitochondrial ETC, resulting in decreased energy (ATP) production. Our results therefore indicate the importance of avoiding (or closely regulating) the use of glyphosate-based herbicides in natural Cerrado habitats of D. wilsonni as they are toxic to seed germination and therefore threaten conservation efforts. It will likewise be important to investigate the effects of glyphosate on the seeds of other species and to investigate the impacts of these pesticides elsewhere in the world.


Assuntos
Fabaceae/efeitos dos fármacos , Germinação/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Animais , Antioxidantes/metabolismo , Brasil , Glicina/toxicidade , Sementes/metabolismo , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA